Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(10)2022 09 30.
Article in English | MEDLINE | ID: covidwho-2066550

ABSTRACT

BACKGROUND: We analyzed the demographic, clinical, and diagnostic data of children and adolescents in Mexico, from the first case of coronavirus disease (COVID-19) to 28 February 2022. METHODS: Using the open databases of the Ministry of Health and a tertiary pediatric hospital, we obtained demographic and clinical data from the beginning of the COVID-19 pandemic until 28 February 2022. In addition, quantitative reverse-transcription polymerase chain reaction outputs were used to determine the viral load, and structural protein-based serology was performed to evaluate IgG antibody levels. RESULTS: Of the total 437,832 children and adolescents with COVID-19, 1187 died. Of these patients, 1349 were admitted to the Hospital Infantil de Mexico Federico Gómez, and 11 died. Obesity, asthma, and immunosuppression were the main comorbidities, and fever, cough, and headache were the main symptoms. In this population, many patients have a low viral load and IgG antibody levels. CONCLUSION: During the first 2 years of the COVID-19 pandemic in Mexico, children and adolescents had low incidence and mortality. They are a heterogeneous population, but many patients had comorbidities such as obesity, asthma, and immunosuppression; symptoms such as fever, cough, and headache; and low viral load and IgG antibodies.


Subject(s)
Asthma , COVID-19 , Humans , Adolescent , Child , Pandemics , COVID-19/diagnosis , COVID-19/epidemiology , Cough , Mexico/epidemiology , SARS-CoV-2 , Immunoglobulin G , Fever , Headache , Obesity , Asthma/epidemiology
2.
Innate Immun ; 28(6): 189-198, 2022 08.
Article in English | MEDLINE | ID: covidwho-1902320

ABSTRACT

At the end of 2019, an outbreak of a severe respiratory disease occurred in Wuhan China, and an increase in cases of unknown pneumonia was alerted. In January 2020, a new coronavirus named SARS-CoV-2 was identified as the cause. The virus spreads primarily through the respiratory tract, and lymphopenia and cytokine storms have been observed in severely ill patients. This suggests the existence of an immune dysregulation as an accompanying event during a serious illness caused by this virus. Natural killer (NK) cells are innate immune responders, critical for virus shedding and immunomodulation. Despite its importance in viral infections, the contribution of NK cells in the fight against SARS-CoV-2 has yet to be deciphered. Different studies in patients with COVID-19 suggest a significant reduction in the number and function of NK cells due to their exhaustion. In this review, we summarize the current understanding of how NK cells respond to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Immunomodulation , Killer Cells, Natural , SARS-CoV-2
3.
Front Immunol ; 12: 631821, 2021.
Article in English | MEDLINE | ID: covidwho-1344260

ABSTRACT

Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.


Subject(s)
Cell Death/immunology , Neutrophils/pathology , Apoptosis/immunology , Apoptosis Regulatory Proteins/metabolism , Autophagy/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Free Radicals/metabolism , Humans , Necroptosis/immunology , Necrosis/immunology , Necrosis/metabolism , Neutrophil Activation , Neutrophils/immunology , Neutrophils/metabolism , Phagocytosis/immunology , Pyroptosis/immunology , Receptors, Death Domain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL